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ABSTRACT

In this work we propose the use of a content-adaptive
mesh model (CAMM) for tomographic image
reconstruction. In the proposed framework, the image to
be reconstructed is first modeled by an efficient mesh
representation. The image is then obtained through
estimation of the nodal values from the measured data.
The use of a CAMM can greatly alleviate the ill-posed
nature of the reconstruction problem, thereby leading to
improved quality in the reconstructed images. In addition,
it can also lead to development of efficient numerical
reconstruction algorithms. The proposed methods are
tested using gated cardiac-perfusion images. Results
demonstrate that the proposed approach achieves the best
performance when compared to several commonly used
methods for image reconstruction, and produces results
very rapidly.

1. INTRODUCTION

A great many methods have been developed for
improving the quality of reconstructed images in
tomography.  Most of these methods are pixel-based, i.e.,
the image is represented and computed directly in a pixel
basis. Bayesian priors (e.g., [1]) or regularization terms
(e.g., [2]) are typically used to combat the effect of noise.

Alternative model-based 2D and 3D reconstruction
approaches have also been proposed. For example,
cylindrical models were proposed in [3] and surface
models were used in [4,5].

In this work we propose a new content-adaptive mesh
modeling approach for image reconstruction.  In this
approach, a customized basis representation is computed
for the image, then the parameters of this representation
are estimated from the data.

In a mesh model, the image domain is subdivided into a
collection of mesh elements, the vertices of which are
called nodes. The image function is then obtained over
each element by interpolation from the values of these
nodes [6]. In a content-adaptive mesh model (CAMM),
the mesh elements are placed in a fashion that is adapted
to the local content of the image. A CAMM provides an

efficient representation of the image in that the number of
parameters (i.e., mesh nodes) is typically much less than
the number of required pixels. In addition, a mesh model
can also be used for motion tracking in an image
sequence, by allowing the mesh to deform over time [7].

The potential benefits of using a CAMM for image
reconstruction are: 1) a CAMM greatly reduces the
number of unknowns, thus alleviating the
underdetermined nature of the reconstruction problem; 2)
this reduction in the number of unknowns can lead to a
fast computation; and 3) a CAMM provides a natural
spatially-adaptive smoothness mechanism, eliminating the
need for regularization terms in the cost function; and 4)
the CAMM provides a natural framework for
reconstruction of moving image sequences.

2. METHODS

2.1 Mesh Tomography Model

Let f x0 5 denote the image function defined over a domain
D. In a mesh model, D is partitioned into M  non-
overlapping mesh elements, denoted by
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where xn is the nth mesh node, ϕ n x0 5 is the interpolation
basis function associated with xn , and N  is the total
number of mesh nodes used.  Note that the support of each
basis function ϕ n x0 5 is limited to those elements Dm

attached to the node n.
Now let n denote a vector formed by the nodal values

of the mesh model, i.e.,

n x x x
T

≡ f f f n1 21 6 1 6 1 6, ,� . (2)

If f denotes the pixel representation of the image function
f x0 5 over D, then from (1) and (2) one can obtain

f n= Φ , (3)

where Φ  is a matrix, composed from the interpolation
functions ϕ n x0 5 in (1), that forms the interpolation



operator from a mesh representation to the pixel
representation.

For tomographic image reconstruction, the imaging
equation is typically written in terms of the pixel
representation f  as

E[ ]g Hf= , (4)

where g contains the measured data, E[ ]⋅  is the
expectation operator, and H  is a matrix describing the
imaging system.

Substituting (3) into (4), we obtain the mesh-domain
imaging equation:

E[ ]g H n An= ≡Φ , (5)

where A H= Φ .

The reconstruction problem becomes that of estimating
n from the given data g. The image f can then be
obtained from (3).

2.2 Reconstruction Algorithms

In this paper we investigated maximum-likelihood and
least-squares estimates of n.

A. Maximum-Likelihood Estimate

The maximum-likelihood (ML) estimate is obtained as

( ){ }ˆ arg max log ;ML p=   n
n g n , (6)

where ( );p g n  is the likelihood function of g

parameterized by n. In this paper, we assume a Poisson
likelihood, which characterizes emission tomography

The ML estimate can be computed by using the
following expectation-maximization (EM) algorithm [8]:
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where ( )k
sn is the value of node s in iteration j, gt  is the

recorded count for observation t , and A ts is the ts entry of
matrix A .  We refer to this algorithm throughout as
MESH-EM.

B. Least-Squares Estimate

The least-squares estimate is obtained as the solution of
the following optimization problem:

2ˆ arg minLS = −
n

n g An , (8)

where ⋅  is the Euclidean norm. This quadratic objective
function has a unique solution, provided that A  is of full
rank. In this study, we used the conjugate gradient

algorithm [9] to perform the optimization. We refer to this
reconstruction algorithm as MESH-LS.

3. RESULTS

A. Evaluation Data
The proposed CAMM-based reconstruction algorithms

were tested using the four-dimensional (4D) gated
mathematical cardiac-torso gMCAT D1.01 phantom [10].
This is a time sequence of 16 three-dimensional (3D)
images.  The field of view was 36 cm; the pixel size was
5.625mm. Poisson noise, at a level of 4 million total
counts per 3D time-frame image, was introduced into the
projections to simulate conditions observed in a typical
clinical Tc m99  study. In our experiments, a single slice
(No.70) was chosen, which has 55,000 counts per frame (a
total of 16 frames). No attenuation map was used. Each
image frame was reconstructed separately, and a single
mesh structure is used for all frames.

B. Reconstruction Methods Considered

In addition to the two proposed reconstruction
algorithms, we also considered three well-known
reconstruction procedures for comparison purposes: (1)
filtered back projection (FBP); (2) pixel-based ML-EM
reconstruction [8] with spatial post-filtering; and (3) a
pixel-based MAP method with a spatial Gibbs prior
[1,11]. The coefficients used for the spatial Gibbs prior are
α = 1, β = 1 2. , δ = 3, γ = 0 35. . For the spatial post-
filtering a 2D Butterworth spatial filter with a cutoff
frequency of 0.2 cycles/pixel was used. For consistency in
the comparison, the same post-filtering was also applied to
MESH-EM and MESH-LS methods in the final results.
Each of the iterative reconstruction algorithms was run for
30 iterations.

C. Mesh generation

The mesh structure was estimated from the projection
data using the following procedure. First, the projection
data were summed over the 16 frames.  From these
summed projections an image was reconstructed using
FBP. The resulting image, denoted by f x0 5, provides a
rough estimate of the heart summed over all 16 frames.

Based on f x0 5, we generated a mesh structure using a
procedure similar to the one we proposed in [12]. In that
paper we proposed a very fast and effective method for
mesh generation, in which error-diffusion halftoning of a
gradient-magnitude image is used to generate mesh nodes
whose spatial density is proportional to the local rate of
intensity change in the image.

The method reported in [12] was presented an ad hoc
approach, but we have since derived a theoretical basis for
this concept, which shows that the correct image to use in
place of the gradient magnitude is the following:

ϑ x x x x0 5 0 5 0 5 0 54 9= ∇ ∇ ∇max , ,xx xy yyf f f2 2 2 . (9)



From this image, we compute a feature map as follows:
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In our preliminary experiments, the “Heart region” and
“Background” were estimated using a simple intensity-
based segmentation procedure.

The mesh node locations are obtained from this feature
map [12] by error-diffusion halftoning, from which the
mesh structure is obtained by Delaunay triangulation (see
Figure 1). A total of 609 mesh nodes are used in the mesh
shown in Figure 1, only about 1/7 the number of pixels.
Note that the algorithm places mesh nodes densely in the
important heart regions, and sparingly in the background.
This mesh was used as a basis on which to reconstruct
each of the image frames in the sequence.  In future work,
we will optimize the mesh to track motion from frame to
frame.

Figure 1. Content-adaptive mesh model of the torso,
including the heart, using 609 mesh nodes.

D. Results

For visual comparison, images of frame 14, obtained by
different reconstruction methods, are presented in Figure
2. The MESH-EM algorithm appears to produce the best
images, accurately capturing the heart wall and applying
appropriate smoothing in the background.  The MESH-LS
algorithm does not perform as well, possibly because it is
based on a suboptimal statistical representation of the
noise.

In Figure 3 we show the peak-signal-to-noise-ratio
(PSNR) versus the frame number. In Table 1 we
summarize the execution time, memory requirement and
PSNR averaged over all frames for various algorithms.
According to all of these criteria the MESH-EM algorithm
exhibits the best performance.

A final note is that we also tested the proposed methods
using a much coarser mesh structure (only 353 nodes). In
this case, the speed of MESH-EM is further improved
(reduced from 4.5 seconds to 3.9 seconds in runtime), but
the image quality is almost preserved (average PSNR
reduced from 27.4 dB to 26.9 dB, which is still better than
that of the other methods in Table 1).

4. REMARKS

In this paper we showed that the use of a CAMM in image
reconstruction can achieve improved image quality at low
computational cost. By the time of the conference, we
hope to further develop this approach to achieve motion-
compensated reconstruction of dynamic or gated image
sequences by deforming the mesh model.
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Figure 2. From left to right in top row: Original phantom, Filtered backprojection reconstruction, ML-EM reconstruction. Bottom
row: MAP reconstruction, MESH-LS reconstruction, and MESH-EM reconstruction.

Figure 3. PSNR vs. frame number for various
reconstruction methods.

TABLE 1. RECONSTRUCTION METHODS COMPARISON FOR

EXECUTION TIME,
ADDITIONAL MEMORY REQURAMENT AND AVREG PSNR.

Execution
Time [sec]

Memory
requirement [Mb]

Average
PSNR [dB]

FBP 0.12 0 23.8
ML-EM* 5.7 5.1 (4096x4096) 26.7
MAP* 9.3 5.1 (4096x4096) 26.5
MESH-LS* 8.3 4.2 (4096x609) 26.4
MESH-EM* 4.5 4.2 (4096x609) 27.4
 * Obtained by prestoring the system matrix as a sparse
matrix
 


