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ABSTRACT

In this paper we investigate a mesh-modeling approach
for multi-modality image reconstruction. In the proposed
approach a mesh model uses information obtained from an
anatomical MR image to aid in reconstruction of PET
images. The aim is to improve spatial resolution and
quantitative accuracy of the PET image by using
anatomical boundary information from the MR image.
The mesh approach accomplishes this by using spatially
adaptive spatial sampling and smoothing in the PET
reconstruction.  Our preliminary results demonstrate that
this mesh-based approach to multi-modality PET
reconstruction can achieve good results at low
computational cost.

1. INTRODUCTION

In this paper we investigate a mesh-modeling approach
for multi-modality image reconstruction. In particular, we
consider the use of a mesh model to utilize information
obtained from an anatomical magnetic resonance (MR)
image to improve the reconstructed image quality from
positron emission tomography (PET) data. Specifically,
the goal is to improve spatial resolution and quantitative
accuracy of the PET images, while respecting the
differences that may exist between anatomical and
functional image boundaries.  Rather than imposing
boundary information from the MR image onto the PET
image, which may risk introducing false boundaries in the
reconstruction, the proposed method uses spatially
adaptive sampling and smoothing in an effort to allow, but
not enforce, the development of edges.

In our previous work [1], a content-adaptive mesh
modeling approach was proposed for two-dimensional
(2D) image reconstruction. It was demonstrated that such
an approach can outperform several well-known
reconstruction algorithms in terms of both reconstructed
image quality and computation time.

In a mesh model, the image domain is subdivided into a
collection of mesh elements, the vertices of which are

called nodes. The image function is then obtained over
each element by interpolation from the values of these
nodes [2]. In a content-adaptive mesh model (CAMM), the
mesh elements are placed in a fashion that is adapted to
the local content of the image. A mesh model of a 2D
brain image [3] is shown in Fig. 1.

Figure 1. Mesh structure (8,887 nodes) obtained from
segmented MR image.

In the proposed approach, a CAMM is first established
based on an anatomical MR image represented on a fine
pixel grid. This mesh model serves as the basis for a
customized basis representation of the image. The
parameters of this image representation are then estimated
from the PET data.

Pixel-based methods have been proposed before for
incorporating MR anatomical priors to improve PET
image reconstruction [4-8]. In [5], for example, a prior
distribution was explicitly defined to incorporate the
anatomical data in a Bayesian framework. Our proposed
approach aims to achieve the same objective, but does so
by means of a content-adaptive mesh structure. In addition
to the potential image-quality advantage of the mesh
approach, it provides a compact image representation



(having fewer unknowns), which can alleviate the
underdetermined nature of the reconstruction problem and
the data storage requirement, and can also lead to a fast
computation.

2. MODEL DESCIPRTION

2.1. Mesh representation model

Let ( )f x  denote the image function defined over a

domain D . In a mesh model, the domain D  is partitioned
into M  non-overlapping mesh elements (here triangular),
denoted by , 1,2, ,mD m M= L . The image function is

represented as
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where nx is the nth mesh node, ( )nϕ x  is a linear

interpolation basis function associated with nx , N  is the

total number of mesh nodes used, and ( )e x is the

modeling error. Now let n  denote a vector formed by the
nodal values of the mesh model, i.e.,
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If f denotes the voxel representation of the image function
( )f x  over D , then from (1) and (2) one can obtain

= Φ +f n e , (3)

where Φ  is an interpolation matrix formed from ( )nϕ x

in (1), and e is a vector representing the error ( )e x .

2.2. Dual-modality mesh generation

Here we consider the use of an MR image for improved
reconstruction of PET images. We hypothesize that this
may allow better reconstruction of boundaries in the PET
image by utilizing, but not enforcing, MR boundary
information.  This is accomplished in part by increasing
the spatial sampling rate of the PET image near
anatomical image boundaries identified from the MR
image.

To obtain the mesh structure from the MR brain image
we employ the following steps. First, a 256x256 MR
image is segmented into three pixel types: grey matter
(GM), white matter (WM), and cerebrospinal fluid (CSF),
by a procedure described in [3]. Second, these segmented
regions are assigned different gray levels: 0 for CSF, 1 for
WM, 2 for GM, and 1 for the region outside the brain for
reasons having to do with the mesh-generation algorithm
used (described in our previous work [9]).  Third, this
mesh-generation algorithm is appplied to place the mesh
nodes automatically in such a way that they are arranged
densely along the anatomical boundaries, but with few
nodes elsewhere. Finally, additional mesh nodes are
placed in the interior of all the brain regions, using a
lower-resolution (128x128) sampling pattern than the MR

grid (256x256). This is in consideration of the fact that the
PET image is expected to contain functional variations
within image regions that are uniform in the segmented
MR image. The resulting mesh is shown in Fig. 1.

2.3. Mesh reconstruction model

For tomographic image reconstruction, the imaging
equation is typically written in terms of the pixel
representation f  as

[ ]E =g Hf , (4)

where g  contains the measured data, [ ]E ⋅  is the

expectation operator, and H  is a matrix describing the
imaging system response.

Substituting (3) into (4), we obtain the mesh-domain
imaging equation:

[ ] ˆ[ ]E = Φ + ≡ +g H n e An e , (5)

where = ΦA H and ˆ =e He .
The modeling error ê  of the basis representation in (5)

is negligible in comparison with the noise level in PET
imaging data. Thus, we obtain

[ ]E ≈g An . (6)

The reconstruction problem becomes one of estimating
the nodal values in n  from the observed data in g . The

image f  can then be obtained from (3) (neglecting e ).

2.4. Statistical image reconstruction

In our study we used a maximum a posteriori (MAP)
estimate of the nodal values in n , which is obtained as

( ) ( )ˆ arg max log ; logp p = + n
n g n n , (7)

where ( );p g n  is the likelihood function of g

parameterized by n , and ( )p n  is a prior on the unknown

nodal values. We assume a Poisson likelihood, which is
characteristic of emission tomography. The prior ( )p n  is

described by the Gibbs distribution [4], i.e.,

( ) ( )( )~ exp Up β−n n (8)

where β  is a scalar weighting parameter, and ( )U n  is

the energy sum of individual nodal values:
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In (8), nℜ  denotes the set of nodes connected to the nth

node, and ,n jw  are weighting factors that can be chosen to

be adaptive to the mesh structure.

The MAP estimate in (7) can be computed by using the
following one-step-late expectation-maximization (OSL-
EM) algorithm [10, 11]:
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where nold
s  is the value of node s from the previous

iteration, tg  is the recorded count for observation t , and

tsA  is the ts entry of matrix A .

3. EXERIMENTAL RESULTS

3.1. Evaluation data

In our experiment a single slice from an anatomical
MRI brain scan was used. The image consists of 256x256
pixels of dimension 1 mm (Fig. 2 (left)). The MR image
was segmented into three pixel types: grey matter (GM),
white matter (WM), and cerebrospinal fluid (CSF) by a
procedure described in [3].

The segmented MR image was then used to generate a
phantom for PET simulation using relative activity levels
of 4:1:0 for GM, WM, and CSF, respectively. The
resulting phantom is shown in Fig.2 (right). A 128x128
sinogram was simulated, at a level of 1M counts, using
intrinsic resolution of 3mm full width at half-maximum
(FWHM).

In addition, a mesh structure (shown in Fig.1) was
obtained using the procedure described in Section 2.2
from the segmented MR image. This mesh strurcture was
then used to reconstruct the PET images.

3.2. Reconstruction methods considered

The proposed method was studied with the following
choices for the prior: 1) no prior assumed (MESH ML); 2)
a quadratic Gibbs prior with , 1n jw =  in (9) (MESH MAP);

3) a quadratic Gibbs prior with ,n jw  set to 1/5 when

j nn  and n  are adjacent pixels, and 1 otherwise (MESH

MAP-W).
For comparison, the following pixel-based methods

were also considered: 1) a maximum-likelihood EM
algorithm (Pixel ML); 2) OSL-MAP reconstruction with a
quadratic Gibbs prior (Pixel MAP).

Post-filtering was applied to both the pixel-based ML
and mesh-based ML methods. All the iterative
reconstruction algorithams were run for 50 iterarions.

3.3. Evaluation criteria

To evaluate the performance of the proposed algorithms,
bias-variance curves were computed for both the WM and
GM regions in a selected region of interest of the
phantom, indicated in white in Fig.2 (right).

3.4.  Simulation results

For visual comparison, we show in Fig. 3 some images
obtained from the reconstruction methods tested. The
MESH MAP-W method (i.e., spatially-varying prior)

appears to produce slightly better images than the other
methods.

 
Figure 2. Left: original MRI image; Right: simulated

PET phantom generated from the segmented MRI image.
The highlighted region of interest (ROI) will be used in
the evaluation procedure.

Bias-variance curves are shown in Fig. 4 for all the
methods considered. These results indicate that the MESH
MAP-W method offers the most accurate quantitative
results over a relatively large operating range.

The execution time of the proposed algorithms was
similar to our previously reported results [1]. The mesh
based methods were approximately an order of magnitude
faster than the pixel-based ones.

4. CONCLUSIONS AND FUTURE WORK

The preliminary results obtained in this study suggest
that the proposed mesh approach is a feasible method for
using an anatomical (MR) image to assist in reconstructing
a functional (PET) image. In future work we will refine
the mesh generation procedure so that the mesh structure
is generated jointly from the MR image and a preliminary
reconstruction of the PET image. By this procedure it may
be possible to further improve image quality, including
resolution recovery.
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Original Pixel MAP MESH MAP MESH MAP-W

Figure 3. Images obtained by three reconstruction procedures. From left to right: original phantom blurred to intrinsic
scanner resolution; pixel MAP reconstruction (EM–OSL/quadratic); MESH MAP reconstruction (EM-OSL/quadratic);
MESH MAP-W (EM-OSL/W quadratic) mesh-based reconstruct with varying smoothing parameters. In all algorithms the
weighting parameterβ in (8) was set to 0.005.  The MESH MAP-W image appears to exhibit a degree of resolution

recovery not seen in the other images.
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Figure 4. Bias-variance curves, obtained from 56 noise realizations, for the methods considered. The MESH MAP-W
algorithm produces the lowest curve for both grey- and white-matter regions, indicating that it produces the best
quantitative performance in this preliminary study.


