
ILLINOIS INSTITUTE OF TECHNOLOGY

ECE 508 SIGNAL AND DATA COMPRESSION (Fall 1999)

PROJECT #1

Scalar and Vector Quantizer Design for Quantization of Speech Samples

Due Date: November 1, 1999

Objectives

The major goals of this computer simulation project are:

1. Implement the generalized Lloyd algorithm (GLA) to enable the design of scalar and

vector quantizer codebooks from training data.

2. Design scalar and vector codebooks for quantization of speech samples.

3. Evaluate the performance of the designs.

Ground Rules

You must write your own programs, run your own simulations, and analyse and interpret
your simulation results. Submit a report on paper. Document any theoretical/analytical
preparation you did (or simply refer to speci�c material in the textbook) as part of your
design of your computer programs. Document your simulation results and plots, any extra
e�ort in addition to the required work detailed below, and your observations and conclusions.

Grading is based on the quality of your report and simulation results and any \extra mile"
you put into the work. Present your results compactly, clearly, and selectively. A report
\stu�ed" with redundant material will not qualify for a high grade. Email all the programs
you have written for the project, in one concatenated plain-text �le, to chan@ece.iit.edu.
Do not include your computer programs with your report.

You may discuss with your classmates about the project, but your e�ort must be essen-

tially independent. Veri�cation of independent e�ort will be performed, and plagiarism will

be treated as academic dishonesty. Developing your own learning and judgement skills is

more rewarding than recycling others'.
You may, if you wish, use \canned" library functions to calibrate your simulation results.

Comparing results from two di�erent computer programs that purport to perform the same
task is not always trivial; so it might not be worth your time. Nevertheless, if you choose

to do so, document it in your report. Otherwise, library functions should only be used to
analyse and visualize your simulation results.

Include a comment header with your program describing on what machine the program

was compiled and run (e.g. gcc on Sun Unix, Borland C on Windows 95). For each program

module, include at least a brief comment statement describing the function of the module.

This course is not about programming, so you are free to choose any computer language you
like. Any reasonable implementation will be acceptable.

1



Implementing the GLA

Practical issues that need to be addressed in implementing the GLA are:

1. Choice of the initial codebook. There are many ways to initialize the codebook. For

instance,

� generate a uniform or lattice quantizer codebook

� pick samples from the training set using some selection method such as random

sampling, sampling with a minimum distance admission criterion, etc

� \splitting" or \tree-growing"

Running the GLA with di�erent initializations will lead to di�erent codebooks of dif-

ferent quality.

2. Detection and correction of \empty cells." When upon completion of the encoder

optimization step of the GLA, one or more partition regions/cells are found to have
not \attracted" a single training vector from the training set, then centroids can not be
computed for these empty cells. Empty cells can be corrected by assigning a portion
of the training vectors of the heavily populated cells to the empty cells. To do so, one
needs to maintain population counts for the cells, and devise a selection and sharing

procedure that would handle more than one empty cell.

Note that a \nearly empty" cell may also be problematic. On the other hand, it is
to be expected (why?) that some cells will have a larger proportion of the training
population than other cells. Moreover, a speech �le that has many \silence" intervals
and a relatively stationary background noise could result in some cells with very large

counts.

Any empty cell correction procedure that you devise is likely to violate the optimality
conditions undergirding the GLA. What implication does that have for the monotonic
improvement property of the GLA, and the convergence time of the algorithm?

3. VQ codebook design can be very computation intensive. There are two sources of com-
plexity growth: (i) GLA iterates between optimizing the encoder and the decoder, but

encoder complexity grows exponentially with the code rate and the vector demension;

(ii) the training set size is usually chosen to be some �xed multiple (the \training ratio")

of the size of the codebook, but codebook size also grows exponentially with the code

rate and the vector demension. Therefore it is prudent to write the compute-intensive
part (the \computational kernel") of your GLA program as e�ciently as possible. If

your computer has lots of RAM, try keeping as much of the data in RAM as possible.
Avoid unnecessary indexing and movement of data, and do some algebra by hand to

minimize the amount of computation before commiting to programming. Some of the
computations may serve multiple purposes, so that you can avoid repeating them, or

you can reuse intermediate results. Of course, the saving would only be signi�cant

for calculations that represent a signi�cant fraction of the total amount of computa-
tions. And if run time and computer access is not a problem for you, maybe it is not

worthwhile to spend a lot of time optimizing your code.

2



Depending on the speed of your computer, it could take hours to design a large code-

book. Using an interpreter based computer language such as Matlab to design large

VQ codebooks is not recommended. You can project the run time for designing a large

codebook by �rst designing a smaller codebook and note its run time and number of

GLA iterations. (In any case, to avoid wasting time on generating garbage results, it

would be prudent to test and debug your program on a small data set �rst.) Once

you know the run time per GLA iteration for a given codebook size and data set size,

you can then project the run time for a di�erent codebook and training set size. The

number of GLA iterations needed to achieve \near convergence" depends on a number

of factors, such as how close is the initial codebook to some \stationary point" on the

error (MSE) surface. Typical number of iterations is between 10 and 20. A smaller

number is not necessarily an indication of poor codebook quality.

You might �nd the design examples described in Section 11.4 of Gersho and Gray helpful
to calibrate your results. Note however that the rate-distortion characteristic for real-life
sources such as speech can vary from one data set to the next, depending on a host of
factors, e.g. how the signal was �ltered, the number of speakers, the language, etc. Since

you do not have access to the original data used to generate the results shown in Section
11.4, you should not try to match the results on an absolute basis.

To ease debugging and to monitor the \health" of your program and your simulation
runs, you should consider having your program write out vital statistics to a journal �le
as simulation progresses. For instance, you can monitor MSE convergence, cell population

statistics, etc. For very long simulation runs, you may even �le away a copy of the codebook
obtained in each GLA iteration. If the program crashes, you can restart from the latest
codebook.

Designing Codebooks for Quantizing Speech Samples

Speech �les are available on the course Web site. See the appropriate README �les for
guidance. The larger speech �le contains the training set and the smaller the test set. Note
that Unix �les store the most signi�cant byte �rst, whereas PC �les store the least signi�cant
byte �rst. (Actually, byte ordering is determined by the machine architecture rather than

the operating system.) Byte swapping might be necessary, depending on your target machine

and �le download method.
Apply the original training set to your GLA program to design pdf-optimized codebooks

for various values of vector dimension k and code rate r in bits per sample. Take every k

samples from the �le to form a training vector; do not reuse any sample. Suggested values

of k are 1, 2, 4, 8. Maintain a training ratio of no less than 50. This constraint and the size

of the training set (and perhaps program run time) will determine the maximum r you can
attempt.

Also, design uniform scalar quantizers for di�erent values of r for the training set. De-

scribe how you chose the step size as a function of r, using the training set? Suggested values

of r are: 1, 2, 4, 8, 12.

3



Performance Evaluation

Evaluate the rate-distortion performance of the quantizers you have designed. \Rate" is

measured using \code rate" in bits per sample; actual bit rate depends on how the quantizer

output points are coded into binary bits. \Distortion" is measured using mean-squared error

(MSE), where the averaging is taken over the entire data set. In order to compare results

between di�erent data sets, MSE distortion should be expressed in terms of signal-to-noise

ratio (SNR) in decibels.

Apply your designed quantizers to produce quantized speech, separately from the training

set and from the test set. Calculate separate SNR (dB) values for the training set and the

test set. Plot SNR (dB) performance as a function of k and r. Organize the data in di�erent

plots so you can make appropriate observations and comparisons. As an additional data

point for your performance graphs, you may include the SNR of the �-law quantized speech

on the course Web page. Consider the following issues:

1. Correctness check: do the performance di�erences between di�erent types (uniform
scalar, Lloyd-Max, VQ with a given k) of quantizers make sense? For instance, which

quantizer gives the best performance for a given r? Is there any analmoly that might
suggest the presence of 
aws in your experiments?

2. Can you explain the performance di�erence between the various types of quantizers,
for a given r? Can you render your explanation quantitatively, making use of high-
resolution theoretical results?

3. Can you explain the performance trend as a function of r, for each type of quantizer?
Is there any trend that matches theoretical prediction?

4. Is there any great descrepancy between the training and the test SNRs? If so, what
are the possible causes?

You may optionally compare the quality of quantized speech �les by listening to them. If

you choose to do so, you would need to use a headphone and listen carefully in a relatively

quiet room. Tools for playing speech �les are listed on the course Web page. Listen for noise
and distortions, and note any change in quality and naturalness. Try ranking the speech
quality between the di�erent quantized �les without looking over the SNR results. Does

your subjective quality ranking match well with SNR ranking? What implication can you

draw regarding using SNR as a predictor of the subjective quality of quantized speech?
As a novelty, you may subtract the quantized speech from the original speech to obtain

the quantization error signal. Listen to the error signals produced by using di�erent r and
k values. What kind of sound can you hear? Is there any telltale sign in the error signal

about the original speech signal? How does the texture of the error signal vary with r and

k? Does your listening suggest any sort of model that may be used to relate the error signal
to the original signal and the quantizer (see, for example, the latter part of Section 5.6 of

the textbook)?
Another novelty: some Matlab licenses include a voronoi function which you can use to

plot the Voronoi partition of a two-dimensional vector quantizer. You can use the command

to observe the evolution of the partition with the GLA iterations.

4


