
ILLINOIS INSTITUTE OF TECHNOLOGY

ECE 508 SIGNAL AND DATA COMPRESSION (Fall 1999)

PROJECT #2

Performance Comparison Between Vector and JPEG Quantization of Images

Due Date: December 6, 1999

Tasks

The major tasks of this computer simulation project are:

1. Design vector quantization codebooks for coding image pixels.

2. Measure the rate-distortion performance of the codebooks on test images.

3. Compare the rate-distortion performance and (optional) subjective visual quality, be-
tween the vector quantized and JPEG quantized test images.

Ground Rules

All the ground rules laid down for Project 1 also apply to this Project.

Image File Format

The most compact way (other than storing it as a compressed bit stream, using for instance

JPEG) of storing an 8-bit grey scale (no color components) image in a �le is to use one byte
to represent the amplitude of each pixel. The byte is interpreted as an unsigned integer with
numeric range from 0 to 255, with 0 for the darkest pixel and 255 for the brightest pixel.
The pixels of the image are ordered in the �le in a raster sequence: from the top row to the
bottom row, each row from left to right. When the pixels are stored in a \raw" (headerless)

�le format, the �le size in number of bytes would equal to the number of pixels in the image.

You can display a raw image �le using the Matlab program display im.m, supplied to

you on the course Web site. If you had not worked with images in Matlab before, you might
want to study the display im.m program just to learn the basic setup in Matlab. You are of
course welcome to use other software tools, e.g. xv and ImageMagick. Viewing images is an

optional exercise in this project. However, viewing the quantized images does o�er you an

additional means of checking the correctness of your work.
There are numerous standard �le formats for storing image and video data. Some formats

are \lossless," in the sense that if you convert a raw �le into that format, you can recover
from the formatted �le the original raw �le, with every bit unchanged. Other formats are

\lossy," so you have to be careful with choosing the format. The images you use for this

project are supplied to you as raw �les and also in TIFF format. Matlab's image toolbox
can handle the TIFF format. There is no \loss" in storing a raw image in TIFF, though

a TIFF �le takes more disk space. If you are unfamiliar with standard image �le formats,
perhaps the most hassle-minimizing strategy is just work with raw �les.

1



The Generalized Lloyd Algorithm

You can choose between using the GLA program you wrote for Project 1, or the sample

GLA program posted on the course Web site. The sample program is o�ered to you as a

contingency, in case your own GLA program does not function properly. Do not assume

that the sample GLA program necessarily works better than yours. You can try running

both programs and compare them on the basis of computation e�ciency and correctness of

results.

If the GLA program you use does not already measure the empirical probabilities of the

code vectors in the codebook, you will need to modify the program to include this feature.

In this project, we assume that the code vectors in the VQ codebook are coded using a

variable-length code (VLC). In order to measure the bit rate, we need to know the lengths

of the VLC codewords. Since we do not need to generate the bit stream that constitutes the

output of the VQ encoder, we do not need to know values of the VLC codewords.

In this project, we will not design any VLC. We would simply use li = int(� log
2
(pi))

as an estimate of the length of the VLC codeword for the i-th code vector, where pi is
its empirical probability measured during the codebook training phase, and int(�) is the
smallest integer equal to or greater than the argument. In the derivation of the \loose"

upper bound on the average length of a uniquely decodable code, we saw that the Kraft
inequality guarantees that a uniquely decodable code with codeword lengths li; i = 1; : : : ; N
exist. You may compare the resultant average length L =

P
N

i=1
pili with the entropy lower

bound H(a) = �
P

N

i=1
pi log2 pi. An actual Hu�man code you design will give an average

length greater than or equal to H(a) and less than L; hence, L is a pessimistic estimate.
Note that the code vector probabilities should be obtained for the �nal VQ codebook

produced by the GLA, not for any of the intermediate codebooks that are evolving while
GLA is still converging.

If you plan to store the quantized image in 8-bit raw �le format, you might �nd it
convenient to simply round the values in the �nal VQ codebook to an integer between 0 and
255 inclusive. (This does not imply that GLA should use integer variables for computation.)

Having the code vector values already in the permissible integer range enables you to dispense
with the need to remap the quantized pixel amplitudes before writing them out to an 8-bit
raw image �le.

In the GLA, the centroids and other intermediate variables related to pixel amplitudes

should be kept as oating point numbers; variables that are used to accumulate a large

number of values should be in double precision. The integer conversion applies only to the
�nal VQ codebook.

Performance Measures

We assume that the VQ code vectors are variable length coded. JPEG uses zero-run-length
and variable-length coding of DCT coe�cients. Thus, it is reasonable to measure the coding

rate for either scheme in average number of bits per pixel. This measure can be calculated

as the total number of bits used by the encoder to describe the image, divided by the total
number of pixels in the image.

In image and video coding, it is common to measure the distortion in peak signal-to-noise

2



ratio (PSNR) in dB. For 8-bit gray-scale images, PSNR (dB) is de�ned as 10 log
10
(2552=D)

where D = Ef(I � Î)2g is the MSE incurred by approximating the pixel random variable

I with the quantized pixel Î. If the image is vector quantized, then D can alternately be

written as D = EfkX� X̂k2g=k, where X̂ = Q(X).

We de�ne operational rate-distortion performance (ORDP) as PSNR in dB as a function

of the coding rate in average number of bits per pixel, produced by applying a particular

coding scheme to a particular image or a set of images. ORDP will be used as our objective

characterization of coding performance. A coding scheme is said to o�er better objective

performance if the ORDP graph of the scheme lies above that of another coding scheme.

Our goal is to compare the ORDP of VQ and JPEG over a range of coding rates between

roughly 0.25 bit/pixel and 1 bit/pixel. A ORDP graph for a test image can be obtained

by plotting a few ORDP data points. JPEG quantized test images, at average coding rates

of roughly 1/4, 1/2, 3/4, and 1 bit/pixel, are available on the course Web site. The exact

values of the coding rates can be found in a README �le. To generate an ORDP plot for
a test image, you need to calculate the PSNR at each coding rate.

OPTIONAL: For audio-visual signals, the subjective or perceptual quality of the quantized
signal is even more important. Thus, you are encouraged to view the quantized images and
compare them on the basis of perceptual quality and discernable quantization artifacts.

Usually, we compare the quantized images produced by di�erent coding schemes at roughly
the same coding rate. Typical artifacts to look for are distortion of edges and roughening of
smooth surfaces.

A high quality report should include images that exhibit discernable di�erences. So you
might want to generate images from the image viewing software, to include in your report.

Note that viewing images that are rendered on a screen, with the proper setting of

screen contrast, image size, and viewing distance, can unveil more image details and coding
artifacts, than viewing images that are printed on paper using an ordinary laser printer.

Organizing Image Pixels for Quantization

For the purpose of quantization, the pixels in an image are organized into blocks. The pixels
in each block are scanned into a vector. The most common approach is to use contiguous and
non-overlapping square blocks of a �xed size M �M . The images used in this project have

a size W = 176 pixels per row and H = 144 rows per image. You can scan the pixels in each

block into a vector either by row or by column. However, you need to apply your scanning

scheme consistenty, as you will need to organize the pixels into vectors for the purpose of

quantization, and organize the quantized pixels to create a quantized image. The rule is:
you put a quantized pixel into the same location of the quantized image as the location of

the original unquantized pixel in the unquantized image.
Generally, VQ gives lower distortion as the vector dimension k =M�M grows. However,

aside from complexity consideration, we may be limited by the size of the training set. One
method to obtain a larger training set from a given set of images is to create training vectors

from overlapping blocks. That is, instead of shifting byM pixels in either dimension to read

out the next training vector from an image, we shift by an amount L < M pixels. This
way, we obtain W �H=L2 training vectors instead of W �H=M2 training vectors from each

image. This method of enlarging the training set has its drawback. Ideally, for memoryless

3



VQ coding, we prefer the training vectors to be independent realizations drawn from the

same probability distribution. In practice, the vectors are correlated because adjacent pixel

blocks are correlated. Making the blocks overlap increases the correlation. Generally, the

more correlated is the training data, the greater the chance of occurence of empty cells during

training.

In this project, maintain a training ratio no smaller than 15. Use the two images \akiyo"

and \foreman" to test your VQ codebooks. Use all the other images to populate the training

set. Note that the blocks obtained from a test image for quantization should not overlap.

Performance of VQ

In most image and video coding standards, where transform coding rather than VQ is used,

the transform block size is typically 8 � 8. Generally, for best VQ performance, we would

like to make the block size M �M as large as possible. Using M = 8 for VQ is not very
practical. Even M = 4 is pushing the complexity envelope, if the target bit rate is high
enough. Thus, in this project, use a 3� 3 block size. Since H=M = 176=3 = 582

3
, we are left

with a partial block at the end of each row of blocks in an image. The remedy is to discard
the right most two columns of pixels. Do not code them or include them in your ORDP

calculations. If you are interested, you may also design VQ codebook for 4 � 4 blocks. You
should de�nitely present results forM = 3. Results you present for other values ofM would
be treated as \extra mile" e�ort.

We have chosen to measure the bit rate using R, the average number of bits per pixel.
When a VLC is used to identify the code vectors, there is no obvious relationship between

N , the number of code vectors in a VQ codebook, and R, other than that R is likely to be
less than log

2
(N)=k. For a quantized test image, R is calculated as the total number of bits

needed by the encoder to identify the code vectors, divided by the total number of pixels
actually quantized. Thus, R depends on the statistics of the test image, which may di�er
from the statistics of the images in the training set. This should not cause any di�culty
towards generating an ORDP graph for each test image. Once you have several ORDP

points, obtained using VQ codebooks of di�erent sizes to quantize the test image, you can
plot the graph. However, if you elect to compare the visual quality of VQ quantized and

JPEG quantized images, you would need to generate VQ quantized images with R values

that are pretty close to those of the JPEG quantized images.
In your report, you should try to explain the performance di�erence observed between

VQ and JPEG, based on ORDP and (optionally) subjective characterization. Note any
change in their relative performance as a function of the bit rate.

4


