
Illinois Institute of Technology

ECE 565 Multidimensional Digital Signal Processing
(Fall ‘98)

Project 2: Motion Estimation Using Block Matching

12/08/1998

Jovan Brankov

1

Step by step procedure with results

1. I wrote tree routines for block-matching of NxN block in ±M surrounding of the block, and one that performs a global
search for the block, on the whole image, by using correlation (like the match filter). These routines are called from the mkdv
program for each block of target image. The Mkdv program makes displacement vectors (DV’s) for the whole image depending
on the desired method, block size, searching area size and constants C and Ro. C and Ro will be defined later.

The routines are opti, sopti, fopti, and copti. All routines try to minimize the cost function defined as:

SAD I n I n vB t r
n B

i

i

= − −
∈
∑ 1 6 1 6 ,

with respect to v , over some searching area s for the block Bi , so we are looking for:

v I n I n v
v S

t r
n Bi

− ∈ −
∈

= − −
%&'K

()*K∑0
0

arg min
; @ 1 6 1 6 .

In order to measure the quality of the estimated image we can define:

SAD SADB
B

i

i

= ∑ ,

where the summation is over all blocks of the frame.

Routine descriptions:

• opti performs the searching for the best match around the current point, at relative positions:

l *

, , ,

, # ,

, , ,

− − − −
−
− −

�

!

"

$
###

1 1 1 0 11

0 1 0 1

1 1 1 0 11

1 6 1 6 1 6
1 6 1 6
1 6 1 6 1 6

,

where l is an arbitrary jump from the current point. This routine is called from mkdv several times with different l . Although
we do not use current point it can happen that v becomes zero.

More about this can be found in the handout from the class on p.502.

• sopt performs searching just on two neighboring points of the current point, in the same direction and based on the
result, determines the new current point. This is repeated for certain number of times. The possible size of searching area
depends on the number of steps.

More about this can be found in the handout from the class on p.502.

These two algorithms can be "trapped"!
 ---------- ---- ---------

2

For example, take the image like this:

Figure 1. Example of tough reference image.

and we try to find the template:

Figure 2. Example of tough target block.

There are several points where the pervious algorithms will stop, because the cost function has several local minimums
and the results will be dependent on the starting point.

Figure 3. The several solutions.

3

• fopti uses "brutal force" algorithm which goes through every point in the searching area and finds the global
minimum.

• copti computes normalized cross-correlation between the reference image and target block. Normalization is
necessary because the frame has unequal brightness at its points. The maximum of the cross-correlation gives us the center of
the region that matches target the best. Searching area is the whole reference image.

2. Done.

In the following experiment, we use two frames, one serves as a reference and another as a target (desired) frame.

20 40 60 80 100 120 140 160

20

40

60

80

100

120

140

Figure 4. Reference frame.
20 40 60 80 100 120 140 160

20

40

60

80

100

120

140

Figure 5. Target frame.

3. Parameter that was obtained by experiment, C, represents threshold parameter, which reduces unneeded motion
vectors (v). These motion vectors are present because the solution for v , is not unique, especially for smooth surfaces on the
frame. With choosing the suitable C we can improve the quality of the MF.

 If d d c Bi− < −0 0

 then v v* ← −0,

else v* ← 0.

In later discussion I will use "brutal force" (point by point search) algorithm, but first let us consider the costs of using
such dummy algorithm by looking at the computation time and accuracy of the result. I used C=1, the 8x8 blocks and searching
in ±8 surroundings of the block.

execution time method SAD search area
opti 22.8600 "jump by 3,2,1,3,2,1" 150961 possible 12x12 area
sopti 14.4380 single step decision 66490 possible 16x16 area
fopti 119.4220 point by point search 45657 16x16
copt 143.4380 normalized correlation 49887 whole image

Which algorithm is better, can be determined by using the real motion pictures with real data compression where we can
measure the quality of obtained images vs. compression rate or computation time (delay). These measurements must be
performed on the bunch of different frame types and then take the average. The goodness of each of these algorithms depends
on the type of the motion. For example for "big" motions and noisy frames the last one should be the best, but for relatively
restricted motions between frames, the second one, single step decision, should be good enough, yet very simple and fast.

In the MF computations, I assumed that all pixels from the target frame are on the reference frame. That means that there
are no new objects in the target frames. That is a rough assumption, but if we remember that, we do not have the way to know

4

what is outside of the frame or behind the object, it seems good enough. In addition, it seems logical that we can deal with
boundaries by not searching in the areas that are out of the frame. Because of that, we will have all DV’s addressing the blocks
inside the reference frame.

In order to determinate the value for C, I used two methods simultaneously:
• measuring the SAD of the estimate frame
• visual inspection
The first one is more precise, but it is hard to define mathematically that you do not care about the motion of the

background surface. Moreover, sometimes we can not distinct two frames with different SAD. Therefore, I have chosen C for
which the MF has less DV’s in the areas where there is "no motion".

On the next figure, SAD vs. C value is shown.

.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
5.555

5.56

5.565

5.57

5.575

5.58

5.585

5.59

x 10
4

SAD

C

Figure 6. SAD vs. C parameter for 16x16 blocks.

It can be seen that for smaller values of C, the SAD is better, as it was expected.
By visual inspection, in order to minimize unnecessary MF vectors I decided to pick 0.25 value for C. For this decision I

used a knowledge that, in these cases, there is no motion on the background and that the SAD on Figure 6. starts to rise after
that point.

So, to summarize, for the following results, I used point by point search, in ±8 surrounding of the 16x16 block on the
reference frame, for the best matching in the target frame, and C= 0.25. The ending of the DV is at the center of the block, like
as in given example on the Web, for all MF plots.

20 40 60 80 100 120 140 160

20

40

60

80

100

120

140

Figure 7. Motion field resulted from using 16x16 blocks
and C=0.25 DV Number = 64.

20 40 60 80 100 120 140 160

20

40

60

80

100

120

140

Figure 8. Motion compensated prediction frame resulted
from using 16x16 blocks and C=0.25.

5

The frame difference can be defined as:

Error I n I nt r
n frame

= −
∈
∑ 1 6 1 6 , Error I n I nmc t

n frame

= −
∈
∑ 1 6 1 6~

 ,

where the first error is the difference between the reference and target frame, and the second is the difference between the
reference and motion compensated frame.

For the first case, that can be seen on Figure 9., we have Error = 177859 , and for the motion compensated frame,
Figure 10., Errormc x_16 16 = 55749. From this, it can be seen that with motion compensation we reduced "the power" of the

error.

To display the displaced frame difference (DFD) and the frame difference (FD) I used normalization:

x n n round
x n n x n n

x n n x n nnorm

n n A n n A

n n A
1 2

1 2 1 2

1 2 1 2

255

1 2 1 2

1 2

,
max , min ,

* , min ,

, ,

,
1 6 1 63 8 1 63 8 1 6 1 63 8=

−
−�� ��

�

�
��

�

�
��

∈ ∈
∈

where A is some area in a frame. We do not take the whole image, since there might be an extremely bright point that would
make all the other points look equally dark. For every DFD, and FD the scaling area is in the range of 1 to 130 in n1 direction,
and in the range of 1 to 176 in n2 direction.

20 40 60 80 100 120 140 160

20

40

60

80

100

120

140

Figure 9. Frame difference without the motion
compensation.

Error = 177859

20 40 60 80 100 120 140 160

20

40

60

80

100

120

140

Figure 10. Frame difference with the motion compensation
resulted from using 16x16 blocks and C=0.25.

Errormc x_16 16 = 55749

6

4. Using the same C parameter as above, for 8x8 block size we have:

20 40 60 80 100 120 140 160

20

40

60

80

100

120

140

Figure 11. Motion field resulted from using
8x8 blocks and C=0.25

DV Number = 248.

20 40 60 80 100 120 140 160

20

40

60

80

100

120

140

Figure 12. Motion compensated prediction frame resulted
from using 8x8 blocks and C=0.25.

\ plots. 20 40 60 80 100 120 140 160

20

40

60

80

100

120

140

Figure 13. Frame difference with motion compensation
resulted from using 8x8 blocks and C=0.25.

Errormc x_8 8 = 44571

In this case, we have Errormc x_8 8 = 44571.

7

With the same method as above for obtaining C, I picked C=0.6 for "the best" MF for 8x8 block size.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 C
1

4.38

4.4

4.42

4.44

4.46

4.48

4.5

4.52

4.54

4.56
SADx 10

4

Figure 14. SAD vs. C parameter for 8x8 blocks.

20 40 60 80 100 120 140 160

20

40

60

80

100

120

140

Figure 15. Motion field resulted from using
8x8 blocks and C=0.6
DV Number = 224.

20 40 60 80 100 120 140 160

20

40

60

80

100

120

140

Figure 16. Motion compensated prediction frame resulted
from using 8x8 blocks and C=0.6.

8

20 40 60 80 100 120 140 160

20

40

60

80

100

120

140

Figure 17. Frame difference with motion compensation
resulted from using 8x8 blocks and C=0.6.

Errormc x_8 8 = 45143

Now, the residual error is: Errormc x_8 8 = 45143.

Let us summarize:

block size C error DV’s Number coment
no motion compesation - 177859 - -

16x16 0.25 55749 64 "best" MF for 16x16
8x8 0.25 44571 248 MF for 8x8
8x8 0.6 45143 224 "best" MF for 8x8

From this table and previous examples we can see, that with the motion compensation, we can predict one frame from
previous one "very well" and so, reduce the nessesery information. By choosing parametar C, we can make "nice" MF and
reduce unneeded DV’s that come from not uniqesness, of the solutions for DV and noise on the frames.

9

Bonus work
As we defined erlier, the block error is:

SAD I n I n vB t r
n B

i

i

= − −
∈
∑ 1 6 1 6 ,

it can be rewritten as: SAD SADB B
j

i i j
=

=
∑ ,

1

4

 ,

where SAD I n I n vB t r
n B

i j

i j

,

,

= − −
∈
∑ 1 6 1 6 .

Bi,j is defined as a partition of Bi without gaps and overlapping. Therefore, we can assume that we can compute the error for
each sublock and by summing, we can get the error of Bi block. If the error is not uniformly distributed over the Bi, that is,
SADBi j,

has "big" variance, v is not good for the each subblock Bi,j of the Bi block. If we divide Bi in sub blocks and compute

DV for each of the Bi,j , maybe, we can get a better result. By not dividing the whole frame in the smaller blocks, we have less
computations and faster algorithms.

Smirarly as for C, now we need to find the best value for Ro, which is defined as:

 If Ro B SAD
SAD

i B
B

i j

i* max
,

< −
�
��

�
��4

 then v v* ← Bi
,

 else we made subpartition of the Bi

The parameter Ro is a threshold, for the decision when to divide Bi, block into subblocks.

0
0.2

0.4
0.6

0.8
1

0.05
2

0.1

1

10
4.2

4.4

4.6

4.8

5

5.2

5.4

x 104

5

Ro

C

SAD

Figure 18. SAD vs. C, Ro parameters for adaptive block size.

10

By visual inspection, with task to minimize unneeded MF vectors and not to make SAD too big, I decided to pick 0.4
value for C and 6.5 for Ro. The results of the procedure by using these parameters are:

20 40 60 80 100 120 140 160

20

40

60

80

100

120

140

Figure 19. Motion field resulted from using adaptive
 block size, C=0.4 and Ro=6.5

DV Number = 181.

20 40 60 80 100 120 140 160

20

40

60

80

100

120

140

Figure 20. Motion compensated prediction frame
resulted from using adaptive block size,

C=0.4 and Ro=6.5.

20 40 60 80 100 120 140 160

20

40

60

80

100

120

140

Figure 21. Frame difference with motion compensation
resulted from using adaptive block size,

 C=0.4 and Ro=6.5.
Errormc adap_ = 49827

We can see, from next table, that the error is larger than in the case when we used 8x8 block but still smaller then in the
case when we used 16x16 blocks.

block size computation time error parametars DV Number
16x16 31.0630 55749 C=0.25 64

8x8 119.3900 45143 C=0.6 224
adaptive block size 61.8900 49827 C=0.4 Ro=6.5 181

We can see also, that we made the computation time half, compared to 8x8 block search algorithm, but we still have
smaller error then in 16x16 block case. Also we reduced the number of DV’s.

11

Bonus+ work

In trying to make MF using Spatio-temporal constranit method, from the handout p. 503-506, I did not have success. I
think that my program for interpolation works properly, but I did not have enough time (or knowledge) to finish that task.

For interpolation I used this basis: φ i ∈{ 1, x, y, t, x2, y2, xy, xt, yt }.
The function that was to be minimized in order to get a coeffcients of this interpolation is:

Error f x y t S x y ti i
i

n

x n T y n T t n T

n n n

= − ∑�� ��=
= = =

∈
∑∑∑ , , , , | , ,

, ,

1 6 1 6
1 6

φ
ψ 1

2

1 2 3

1 2 3

To minimize this function, with the repect to Si coeffcients I used MATLAB function fmin.
All my programs for this thask have prefix fit****.m.

For the block size of 3x3 pixels, at the position (80,100) and initialy displacement of (8,8) I have:

0.5 1 1.5 2 2.5 3 3.5

0.5

1

1.5

2

2.5

3

3.5

Figure 22. Block from reference frame at (80,100).

0.5 1 1.5 2 2.5 3 3.5

0.5

1

1.5

2

2.5

3

3.5

Figure 24. Block from target frame at (88,108).

0.5 1 1.5 2 2.5 3 3.5

0.5

1

1.5

2

2.5

3

3.5

Figure 23. Interpolated reference block at (80,100).

0.5 1 1.5 2 2.5 3 3.5

0.5

1

1.5

2

2.5

3

3.5

Figure 25. Interpolated target block at (88,108).

This works properly but as I said the rest does not. The next step would be to make a frame that is in time between the
reference and target, using MF obtaind by BM algoritahms. Verifying the results of my programs in that task could help me to
find what I did wrong.

12

Interpolated frame at the half of the way, in time, between the reference and target frame resulted from using
φ i ∈{ 1, x, y, t, x2, y2, xy, xt, yt } basis and MF obtained by BM algorithms for 4x4 block and assuming that dispalcement is
half for each 4x4 block . and C=0.4.

20 40 60 80 100 120 140 160

20

40

60

80

100

120

140

Figure 26. Interpolated at the half of the way, in time, between
the reference and target frame.

20 40 60 80 100 120 140 160

20

40

60

80

100

120

140

Figure 27. Frame difference between the referenc frame
and the target frame.

20 40 60 80 100 120 140 160

20

40

60

80

100

120

140

Figure 28. Difference between interpolated frame and the
target frame.

I did not get the result as I expected. Using MF obtaind by BM algoritham, and dividing each DV by two gave better
resul then this procedure.

