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ABSTRACT

In this paper we propose the use of a content-adaptive
volumetric mesh model for fully three-dimensional (3D)
tomographic image reconstruction. In the proposed
framework, the image to be reconstructed is first modeled
by an efficient mesh representation. The image is then
obtained through estimation of the nodal values from the
measured data. The use of a mesh representation can
alleviate the ill-posed nature of the reconstruction
problem, thereby leading to improved quality in the
reconstructed images. In addition, it reduces the data
storage requirement, resulting in efficient algorithms. The
proposed methods are tested using gated cardiac-
perfusion images. Initial results demonstrate that the
proposed approach achieves good performance when
compared to several commonly used methods for image
reconstruction, and produces results very rapidly.

1. INTRODUCTION

In recent years there has been growing interest in fully-3D
tomographic image reconstruction. A major challenge in
fully-3D reconstruction lies in its memory requirement
and demanding computation time. Like their 2D
counterpart, most 3D reconstruction methods have
traditionally been developed based on voxel image
representations [1]. Bayesian priors (e.g., [2]) or
regularization terms (e.g., [3]) are often used to combat
the effect of noise.

Alternative model-based reconstruction approaches
have also been proposed. For example, cylindrical models
were proposed in [4] and surface models were used in
[5,6].

In our previous work in [7], a content-adaptive mesh
modeling approach was proposed for 2D image
reconstruction. It was demonstrated that such an approach
can outperform several well-known reconstruction
algorithms in terms of both reconstructed image quality
and computation time. In this study, we extend this
approach to fully-3D image reconstruction. In this new

approach, the image is first modeled by a volumetric mesh
model, on the basis of which a customized basis
representation is obtained for the image. The parameters
of this representation are then estimated from the data.

In a mesh model, the image domain is subdivided into a
collection of mesh elements, the vertices of which are
called nodes. The image function is then obtained over
each element by interpolation from the values of these
nodes [8]. In a content-adaptive mesh model (CAMM),
the mesh elements are placed in a fashion that is adapted
to the local content of the image. To demonstrate the idea,
we show in Figure 1 (left) a mesh model obtained for a 2D
cardiac perfusion image in our previous work [7]; also
shown in Figure 1 (right) is a 3D mesh model where, for
clarity, only the distribution of the mesh nodes on the
surface of organs is shown.

The potential benefits of using a CAMM for image
reconstruction include: 1) it provides an compact
representation of the image in that the number of
parameters (i.e., mesh nodes) is typically much less than
the number of required voxels in a voxel image
representation, thus reducing the number of unknowns.
This can help alleviate both the underdetermined nature of
the reconstruction problem and the data storage

the torso, including the heart; Right: a 3D mesh model
where, for clarity, only the distribution of the mesh
nodes on the surface of organs is shown.

! This research was supported by the Whitaker Foundation and by NIH/NHLBI grant HL65425.

0-7803-7622-6/02/$17.00 ©2002 IEEE

II-621

IEEE ICIP 2002



requirement, particularly for the case of 3D
reconstruction; 2) this reduction in the number of
unknowns can also lead to a fast computation; 3) a
CAMM provides a natural spatially-adaptive smoothness
mechanism; and 4) a mesh model can also be used for
motion tracking in an image sequence, by allowing the
mesh to deform over time [9]. Thus, a CAMM also
provides a natural framework for reconstruction of
moving image sequences.

2. METHODS

2.1 Mesh tomography model
Let f(x) denote the image function defined over a

domain D, which is 3D in this study. In a mesh model,
the domain D is partitioned into M non-overlapping
mesh elements, denoted by D,, m=12,---,M. The
image function is represented as

N

£(%)=)" £(%,), (%) +e(®) , (1)

=1
where x,,is the nth mesh node, ¢, (x) is the interpolation
basis function associated with x,,, N is the total number
of mesh nodes used, and e(x) is the modeling error. Note

that the support of each basis function ¢, (x) is limited to
those elements D,, attached to the node 7. In this study,

tetrahedrons are used for D, and linear interpolation

functions are used for @, (x).

Now let n denote a vector formed by the nodal values
of the mesh model, i.e.,
T

ns[f(xl),f(xz),---f(x,,)] : 2
If f denotes the voxel representation of the image function
f(x) over D, then from (1) and (2) one can obtain

f=®n+e, 3)
where @ is a matrix, composed from the interpolation
functions ¢,(x) in (1), that forms the interpolation
operator from a mesh representation to the pixel
representation, and e is a vector denoting the error e(x) .

For tomographic image reconstruction, the imaging
equation is typically written in terms of the voxel
representation f as

Elg] =Hf , “)
where g contains the measured data, E[] is the

expectation operator, and H is a matrix describing the
imaging system.
Substituting (3) into (4), we obtain the mesh-domain
imaging equation:
Elgl=H[®n+e]=An+é, (5)
where A =H®, and é = He.

The modeling error & in (5) can be ignored when
compared to the noise level in the imaging data, as a
CAMM can provide a very accurate representation of the
original image. Thus, we have

Elg]~An. ©)

The reconstruction problem becomes that of estimating

n from the observed data g. The image f can then be

obtained from (3) (with e ignored).
2.2 Mesh domain reconstruction

In this paper we investigate maximum-likelihood (ML)
estimate of the nodal values in n. The ML estimate is
obtained as

ity = argmax{log[ p(gim)} g
p(gin)

parameterized by n. In this paper, we assume a Poisson
likelihood, which characterizes emission tomography

The ML estimate can be computed by using the
following expectation-maximization (EM) algorithm [10}:

where is the likelihood function of g
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where ngk) is the value of node s in iteration j, g, is the
recorded count for observation ¢, and A, is the ts entry

of matrix A . This method is designated as MESH-EM in
the following.

3. PRELIMINARY RESULTS

3.1 Evaluation image data

To  demonstrate  the  proposed  CAMM-based
reconstruction approach, we wused the 4D gated
mathematical cardiac-torso (gMCAT) D1.01 phantom
[12], which is a time sequence of 16 3D images. The field
of view was 36 cm; the pixel size was 5.625mm. Poisson
noise, at a level of 4 million total counts per 3D time-

frame image, was introduced into the projections to

simulate a clinical T¢®™

was used.

study. No attenuation correction

3.2 Reconstruction methods considered

In addition to the two proposed reconstruction algorithms,
we also considered in this preliminary study the following
two well-known reconstruction procedures for comparison
purposes: (1) filtered back projection (FBP); and (2) pixel-
based ML. To help reduce the noise level, the results from
these two methods were post-processed with a 3D low-
pass filter of order 17 with a cutoff frequency of 0.65
(normalized by 7). For consistency in the comparison,
this same post-filtering was also applied to the proposed
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mesh reconstruction method in the final results. Each of
the iterative reconstruction algorithms was run for 30
iterations.

3.3 Volumetric mesh generation

The key to the proposed approach lies in how to construct
a CAMM that is compact and accurate for representing the
volumetric image to be reconstructed. For this purpose we
extended our method in [13] to the 3D case. This method
consists of the following three steps: 1) extract a feature

map o(x) from the image f(x) based on the largest

magnitude of its second directional directives; 2) apply the
well-known Floyd-Steinberg error-diffusion algorithm, a
method originally designed for digital halftoning [14], to
distribute mesh nodes non-uniformly in the 3D image
domain, with density proportional to the feature map

o(x); and 3) use a 3D Delaunay triangulation algorithm

[15] to connect the mesh nodes.

Of course, for tomographic image reconstruction the
mesh structure has to be estimated from the observed data.
The following procedure was demonstrated to work well
in our studies. First, the projection data are summed over
the 16 gated frames. From these summed projections an
image is reconstructed using the filtered back projection

(FBP) algorithm. The resulting image, denoted by f(x),

provides a rough estimate of the heart summed over all 16
frames. The mesh structure is then created based on

f(x) using the steps described above. The resulting 3D

mesh was shown in Figure 1 (right), where, for clarity,
only the distribution of the mesh nodes (instead of the
tetrahedral elements) was shown. The number of mesh
nodes used was 6,494 (comparing to 131,072 voxels). As
can be seen, the mesh obtained by the proposed method is
well adapted to the content of the 3D volumetric image.
Specifically, mesh nodes had been placed densely in the
important heart regions, and sparingly in the background.
More results are provided at the following web site in
animations  for  better  visualization  purposes:
http.//www.ipl.iit.edu/brankov/Rotate.htm.

The obtained mesh structure was then used as a basis on
which each of the 16 3D image frames in the sequence
was reconstructed. In future work, we will optimize the
mesh to track motion from frame to frame.

3.4 Fully 3D CAMM reconstruction

For visual comparison, some representative 2D slices of
frame #1, obtained by different reconstruction methods,
are shown in Figure 2. The images in Fig.2(a) were from
the original phantom, degraded by the intrinsic system
blur. These images represent the ideal case of noise-free
projection data. The images reconstructed using FBP are
shown in Fig.2(b). The ML-EM results are shown in
Fig.2(c), and the MESH-EM results are given in Fig.2(d).
The MESH-EM algorithm appears to produce slightly

better images, capturing the heart wall and achieving
reasonable smoothness in the background. The ML-EM
algorithm produced similar results, but slightly more noisy
than the MESH-EM. As a preliminary assessment of the
accuracy, the peak-signal-to-noise-ratio (PSNR) was
computed for the reconstructed 3D images. The PSNRs of
the reconstructed images for frame #1 by the FBP, ML-
EM, and MESH-EM are 17.69 dB, 21.46 dB, and 22.22
dB, respectively.

As for the execution time, the MESH-EM takes about
2.8 sec for one 3D frame, while the ML-EM takes about
19.7 sec (implemented in MATLAB on a 2 GHz Pentium-
4 PC). A note is that the MESH-EM requires an overhead
of pre-computing the mesh-domain matrix A=H® in
Eq.(6). In our implementation the total time for computing
A was around 48 sec per frame (equivalent to about 2.5
iterations of ML-EM). This can be further reduced in a
more efficient implementation. Nevertheless, the effect of
this overhead will diminish after only 3 iterations as the
MESH-EM is mush faster per iteration when compared to
the ML-EM.

These results, though very preliminary, indicate that the
use of a CAMM in fully 3D image reconstruction can
achieve good image quality at low computational cost. We
will use more comprehensive evaluation metrics (e.g.
bias-variance plot) to better characterize the performance
of the proposed technique in future work.
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Figure 2. Representative slices of frame #1 reconstructed from different methods: (a) original phantom, degraded by the
intrinsic system blur, (b) FBP with post-filtering, (c) ML-EM, and (d) proposed MESH-EM. For consistency, the same post-

filtering was also applied to the images in (c) and (d).
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