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ABSTRACT 
 
Herein we present a quantitative noise analysis of 

diffraction enhanced imaging (DEI), an x-ray imaging 
method that produces absorption and refraction images, 
with inherent immunity to wide-angle scatter. DEI 
produces remarkable images, but requires an x-ray source 
of very high power; therefore, it has principally been 
confined to synchrotron studies. Clinical systems currently 
under development using conventional x-ray sources will 
be photon-limited. Therefore, it is important that the noise 
properties of DEI be understood.  Herein, we show that 
the original formulation of DEI, given by Chapman, et al 
[1], is the maximum-likelihood solution of the image-
estimation problem for the case of Poisson noise.  We 
derive the mean, covariance and signal-to-noise ratio of 
the images produced by this method, which sheds light on 
the effect of system parameters on the computed images.  
We will use these results in future work to derive 
reconstruction methods that are more optimal in the 
presence of noise than the original DEI formulation. 

 
1. INTRODUCTION 

Diffraction enhanced imaging (DEI) [1] is a phase-
sensitive imaging technique which can extract object 
properties in the form of refraction and apparent 
absorption images. Furthermore, DEI exploits wide angle 
scatter rejection contrast to provide images that have been 
shown to improve dramatically the visibility of small, 
low-absorbing structures as compared to conventional 
radiography [2-5].  

A typical DEI set-up is represented in Figure 1. In DEI, 
a monochromated x-ray beam is passed through the 
object, then the angular composition of the beam analyzed 
by a perfect crystal. The high angular selectivity of the 
crystal allows tiny beam deflections caused by refraction 
to be detected.  The DEI refraction image has been shown 
to be well suited for morphological studies of soft tissues 
[3,4]. Both the absorption and refraction images produced 
by DEI are superior to conventional radiographs due to the 
scatter rejection provided by the crystal system [3]. 

 
Fig. 1 Typical DEI setup. The beam is monochromated 
before hitting the object and the analyzer crystal is rotated 
(rocked) to analyze transmitted beam angular components. 

 
A clinical version of the DEI system is being developed 

at our institution.  Owing to the amount of light lost by the 
monochromator, a clinical system based on a conventional 
x-ray source will likely be photon-limited.  Therefore, it is 
important that we understand the behavior of DEI in the 
presence of Poisson noise. The aim of this paper is to 
provide a basic understanding of DEI noise properties to 
aid in the development and evaluation of DEI systems and 
reconstruction algorithms. To the best of our knowledge, 
such an analysis has not before been performed, probably 
due to the fact that synchrotron sources are extremely 
bright, resulting in images that are essentially noise-free as 
compared with most clinical medical-imaging modalities. 

 
2. DEI ESTIMATOR  

The x-ray intensity, after traversing an object, can be 
described by Beer’s law: 

 ( )( )0( , ) exp , ,RI x y I x y z dzµ≅ −∫ , (1) 

where 0I  represents the incident beam intensity and 

( ), ,x y zµ  describes the object’s apparent absorption 

(extinction) coefficient.  
The direction of the emerging beam is altered by 

refraction (in the y direction) by an angle represented 
approximately by: 
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 ( )( , ) , ,x y n x y z dz
y

θ ∂∆ ≅
∂ ∫ , (2) 

where ( ), ,n x y z  is refractive index distribution of the 

object.  The aim of DEI is to recover the refraction angle 
θ∆  and the attenuated intensity RI  at each image 

location ( , )x y .  
Herein, we derive an optimal maximum-likelihood 

(ML) estimator of these quantities from Poisson data.  We 
find that, by chance, the ML solution is precisely the same 
as that of the original formulation of Chapman, et al.  [1].  
We then go on to determine the statistical properties—
specifically, the mean, covariance, and signal-to-noise 
ratio (SNR)—of the ML-DEI solution. 

 Before we begin the ML derivation, let us first briefly 
review the quantities in DEI.  DEI data consist of two 
images of the object, obtained at two rotational positions 
of the analyzer crystal ( Lθ  and Hθ ), one on either side of 
the crystal system’s angular reflectivity function (or 
rocking curve) ( )R θ .  In the absence of noise, these 

images (denoted by LI  and HI ), are given by: 

 [ ] ( ) ( );L L R L L

dR
I E I I R

d
θ θ θ

θ
 = = + ∆ 
 

Θ , (4) 

 [ ] ( ) ( );H H R H H

dR
I E I I R

d
θ θ θ

θ
 = = + ∆ 
 

Θ . (5)  

Here, [ ]E ⋅  is an expectation operator and we define Θ  as 
a concatenation of the unknown parameters of interest, 

i.e., [ ],
T

RIθ= ∆Θ  where [ ]T⋅  is a transpose operator. 

Note that Eq (4) and (5) are strictly valid only if the object 
does not cause ultra-small-angle scattering, and if the 
magnitude of the refraction angle is small enough so that 
the rocking curve is well approximated by a first-order 
Taylor expansion.  

If the imaging system is photon-limited, then the 
observations LI  and HI  can be represented as 
independent and Poisson distributed random variables, 
and the likelihood function is:  

 ( );
! !

L L H HI I I I
L H

L H

I e I e
p

I I

− −

=I Θ , (6) 

where [ ],
T

L HI I=I . 

The ML estimator is obtained as:  

 ( ) ( )ˆ arg max ln ;p=   
Θ

Θ I I Θ . (7) 

This maximization can readily be performed analytically 

by solving ( )ln ;p
∂ =

∂
I Θ 0

Θ
 to obtain the following ML 

solution, which is identical to the standard DEI equations: 

 ( )

( ) ( )
( ) ( )

( ) ( )

( ) ( ) ( ) ( )

ˆ
ˆ

ˆ

H L L H

L H H L

L H H LR

L H H L

I R I R

dR dR
I I

d d
dR dR

I II
d d
dR dR

R R
d d

θ θ

θ θ
θ θθ

θ θ
θ θ

θ θ θ θ
θ θ

 − 
 
 −
  ∆

= =   
−   

 
 −  

Θ I .(8) 

Having derived the ML estimator now let us examine its 
mean, covariance and signal-to-noise ratio properties. 

 
3. ESTIMATOR MEAN, COVARIANCE 

AND SIGNAL-TO-NOISE RATIO 

Exact computation of the statistical properties of the 

ML estimator ( )Θ̂ I  produces a complex and 

unenlightening solution. Therefore, we apply an 
approximate method [6, 7] based on Taylor expansion of 

( )Θ̂ I  around I (the mean of I ) as follows: 

 
( ) ( )

{ }
( )( )

( ) ( )
{ }{ }

( ) ( )
,

2
3

, ,

ˆ ˆ ˆ

1 ˆ
2

n n
n L H n

n n m m
n L H m L H n m

I I
I

I I I I
I I

ο

∈

∈ ∈

∂≅ + − +
∂

∂+ − − +
∂

∑

∑ ∑

Θ I Θ I Θ I

Θ I I

. (9) 

3.1. Conditions for unbiased estimation 

We now show that the ML estimator is unbiased 
(produces results that are correct on average) if and only if 
two conditions are met.  First, the noise variance must be 
equal to the signal (as is the case for Poisson noise); and 
second, the measurements must be taken at symmetric 
points of the rocking curve.  

We begin our evaluation of the estimator mean by 
taking expectations of both sides of Eq (9) and utilizing 
the fact that observations LI  and HI   are independent. 
Now it is easy to show that Eq. (9) results in: 

 ( ) ( ) ( ) [ ]
{ }

2

2
,

1ˆ ˆ ˆ var
2 n

n L H n

E I
I∈

∂  ≅ +  ∂∑Θ I Θ I Θ I . (10) 

The solution of Eq. (10) is presented in the Appendix, 
Eq. (A1), in the most general form using a well-known 
relation between the variance and mean of Poisson 
distributed data, i.e. [ ] [ ]var n nI E I= , [ , ]n L H∈ . 

Next, we assume that LI  and HI  are taken at symmetric 
points of the rocking curve (SPRC) so that 

( ) ( )L HR Rθ θ=  and ( ) ( )d d
L Hd dR Rθ θθ θ= −  where 

( ) 0d
Ld Rθ θ > . In the rest of the paper we refer to these 

assumptions as the SPRC conditions. 
Now by utilizing the SPRC conditions it is easy to see 

that last the term in the numerator of Eq. (A1) will vanish 
and therefore: 
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 ( ) ( )ˆ ˆE   ≅ Θ I Θ I , (11) 

and the estimator is unbiased. 
Note that the refraction estimator is only unbiased if the 

noise variance equals the mean (i.e., the noise is Poisson-
like).   

 
3.2. Estimator covariance 

Here we show that the estimates for refraction and 
attenuated intensity from Poisson distributed samples are 
uncorrelated only if measurements are taken at symmetric 
points of the rocking curve. 

To calculate the covariance of the ML estimator ( )Θ̂ I  

we use only the first two terms of the Taylor expansion in 
Eq.(9), which yields [6, 7]: 

 ( ) ( ) [ ] ( )ˆ ˆ ˆcov cov
T

  ≅ ∇ ∇ Θ I Θ I I Θ I . (12) 

As before, utilizing the fact that observations LI  and 

HI   are independent and Poisson distributed, one can 
obtain a solution for the most general case which is given 
in the Appendix in Eq. (A2). Here we proceeded by 
adopting the SPRC conditions, as we did for the mean. 
Since the last term in the numerator of each off-diagonal 
element is zero under the SPRC assumption, the solution 
becomes simply:  

 ( )( )
( )

( ) ( )

( )

2

2

1 ( )
0

2ˆcov

0
2

L

R L
L

R

L

R

I RdR

d

I

R

θ θ
θ

θ
θ

θ

  
  ∆  −
   ≅        
 
 
  

Θ I . (13) 

So far we have shown that, under the SPRC 
assumptions and Poisson-like noise, the ML estimator 

( )Θ̂ I  is unbiased and the absorption and refraction 

images are uncorrelated (off-diagonal elements in Eq. (13) 
are zero). However this is only true under the stated 
assumptions.  

 
3.3. Signal-to-noise ratio 

We define the SNR of each image as the ratio of the 
signal ( θ∆  or RI ), to the standard deviation of its 

estimate ( ) 1/ 2ˆ[var ]θ∆  or ( ) 1/ 2[var ]RI .  Using Eq. (13), we 

obtain: 

 ( )( )
( ) ( )

( ) ( )

( )

1/ 2

1/ 22
2 2

1/ 2

[2 ]

ˆ

[2 ]

L R L

L L

R L

dR
I R

d

dRSNR R
d

I R

θ θ θ
θ

θ θ θ
θ

θ

 ∆ 
 
    ≅ − ∆       

 
  

Θ I
 (14) 

Upon further analysis, this expression yields the following 
insights: 

• The SNR of the attenuated intensity ( ˆ
RI ) image is 

Poisson-like (it increases as the square root of the 
image intensity ( )R LI R θ ). 

• The SNR of the refraction-angle image θ̂∆  increases 
in an approximately linear fashion in terms of the 
following quantities: 

� the SNR of  ˆ
RI ;  

� the slope of the rocking curve ( )L

dR

d
θ

θ
; and 

� the absolute value of the refraction angle | |θ∆ . 

Thus, SNR is improved by using a crystal diffraction 
order that produces a steep rocking curve, and using 
rocking curve points that are at the highest practical point 
on the rocking curve.  The noise is signal-dependent in 
both the intensity and refraction-angle images; however, 
the SNR increases linearly with refraction signal, but only 
as the square root of the intensity signal.  Finally, the 
refraction-image noise is dependent on the intensity 
signal, but the intensity-image noise does not depend on 
the refraction signal. 

  
4. EXPERIMENTAL RESULTS 

4.1. Monte Carlo simulation 

Here we verify the results in Eqs. (11) and (13) by a 
Monte Carlo simulation. We simulated DEI data under the 
SPRC assumptions with 510  noise realizations.  

First, we verified the estimator bias, which is predicted 
by Eq. (11) to be zero. In the simulation, we found the 
bias to be less than 0.01% over a wide range of object 
parameters.  

Estimator variances obtained from the Monte Carlo 
simulation along with results obtained by the 
approximation in Eq. (13) are presented in Figure 2. There 
is excellent agreement between predicted performance and 
experimental results. Note that the variance of the RI  
estimator does not depend on the refraction angle. 
However this is true only under the SPRC assumptions.  

Equation (13) predicts that θ∆  and RI  estimates are 
uncorrelated. In our simulation we found this to be true, 
with the correlation coefficient being less than 0.005. 

1430



 

The accuracy of the approximation increases with the 
beam intensity. This is expected since the Taylor 
expansion in Eq.(10) is strictly valid for a quadratic 
objective  function [7]  (e.g. log-likelihood of Gaussian 
distribution) and the Poisson  distribution asymptotically 
approaches the Gaussian distribution as the beam intensity 
increases. 
 

5. CONCLUSION 

We have shown that the DEI method is a maximum-
likelihood method, provided that the noise is Poisson-like 
and the data are acquired at symmetric points on the 
rocking curve. We have presented expressions for the 
mean, covariance, and SNR of DEI images, and verified 
them by Monte Carlo simulation. We find that DEI 
images are unbiased and uncorrelated if and only if the 
observations are Poisson-like and acquired at points of the 
rocking curve that have the same derivatives, namely 

( ) ( )d d
L Hd dR Rθ θθ θ= − .  

In the future we plan to use presented results to evaluate 
various DEI reconstruction algorithms performance. 
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Fig. 2. Comparison of approximative expressions (Eq (13)) and Monte Carlo simulation. Variance of refraction angle estimator. (a) 
variance as a function of the number of photons emerging from the object for 0θ∆ =  rad; (b) variance as a function of refracted angle 

for 24RI =  photons. Variance of transmitted beam intensity estimator, (c) variance as a function of intensity for 0θ∆ =  rad; (d) 

variance as a function of refracted angle for 24RI =  photons. Note that agreement increases as the number of photons increases. 

7. APPENDIX 

From Eq. (12), using Eq (4) and (5), it can be shown that the DEI estimator mean is given in general by: 

 ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
3

( )

ˆ ˆ
( )

0

H H L L L H H L H L

R L H H L

dR dR dR dR dR dR
R R R R

d d d d d d

E dR dR
I R R

d d

θ θ θ θ θ θ θ θ θ θ θ θ
θ θ θ θ θ θ

θ θ θ θ
θ θ

       + ∆ + ∆ − +       
       −

  ≅ +     −   
  

  

Θ I Θ I (A1) 

Similarly, from Eq. (14) using Eq (4) and (5) it can be shown that DEI estimator covariance is given in general by: 

( )( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

2 2

( )

ˆcov

H H L L H L L H H H L L H L

R L H H L L H H L

H H

dR dR dR dR dR dR dR dRR R R R R R
d d d d d d d d

dR dR dR dR
I R R R R

d d d d

dR
R

d

θ θ θ θ θ θ θ θ θ θ θ θ θ θ θ θ θ θ θ
θ θ θ θ θ θ θ θ

θ θ θ θ θ θ θ θ
θ θ θ θ

θ θ
θ

         + ∆ + ∆ + + + ∆ + ∆ + ∆ +         
         

   ⋅ − −   
   

≅

+

Θ I

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 2 2 2

2 2

R H H L L H L H LL L H L

L H H L L H H L

dR dR dR dR dR dRdR dR dR I R RR d d d d d dd d d

dR dR dR dR
R R R R

d d d d

θ θ θ θ θ θ θ θ θθ θ θ θ θ θ θ θ θ θ θ θθ θ θ

θ θ θ θ θ θ θ θ
θ θ θ θ

 
 
 
 
 
 
       ⋅ + + + ∆  ∆ + ∆ +            
 
    − −         

 (A2) 
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